

Course Description

Course name #061 - IC Reliability, Fault Isolation, and Failure Analysis

Duration 5 days

Format Public Classroom and Inhouse Event. Not Suitable Online

Overview

Mr. David Vallett, PeakSource Analytical, USA, and Dr. Kristof Croes, Group Leader Interconnect Reliability, Test and Modeling at imec, are teaching this 5-day course in IC Reliability, Fault Isolation, and Failure Analysis.

Quickly finding and eliminating defects in electronic devices is critical to all levels of the many businesses including ICs, PCBs, automotive, consumer, and IoT. This can directly affect technology development, manufacturing yield and time to market, reliability, serviceability, and client satisfaction.

Many factors contribute to the achievement of high yield and reliability and significantly impact product performance and cost. A thorough understanding of product and technology reliability principles and mechanisms of failure is essential.

A fundamental knowledge of defects and failure mechanisms enables the up-front achievement of these technology goals through circuit and layout design, device design, materials choices, process optimization, and thermo-mechanical considerations. Fault isolation, failure analysis, and materials analysis play a major role in the improvement of yield and reliability. Coordination of people in many disciplines is needed in order to achieve high yield and reliability. Each needs to understand the impact of their choices and methods on the final product. Unfortunately, very little formal university training exists in these critical areas of IC reliability, Fault Isolation, and failure analysis.

Technical Focus

Quickly finding and eliminating defects in electronic devices is critical to all levels of the many businesses including ICs, PCBs, automotive, consumer, and IoT. This can directly affect technology development, manufacturing yield and time to market, reliability, serviceability, and client satisfaction. Many factors contribute to the achievement of high yield and reliability and significantly impact product performance and cost. A thorough understanding of product and technology reliability principles and mechanisms of failure is essential. A fundamental knowledge of defects and failure mechanisms enables the up-front achievement of these technology goals through circuit and layout design, device design, materials choices, process optimization, and thermo-mechanical considerations.

Fault isolation, failure analysis, and materials analysis play a major role in the improvement of yield and reliability. Coordination of people in many disciplines is needed in order to achieve high yield and reliability. Each needs to understand the impact of their choices and methods on the final product. Unfortunately, very little formal university training exists in these critical areas of **IC reliability, Fault Isolation, and failure analysis**.

Who Should Attend

This course will be of strong interest to engineers working in R&D, design, manufacturing, and reliability of automotive and consumer electronics, and IoT, as well as management, equipment service, and procurement.

It will be relevant both for companies producing integrated circuits themselves and for those involved as partners in the "fabless/foundry" model.

Course Daily Schedule

Day 1 - KRISTOF CROES

Definitions and Overview of Failure Mechanisms

- Scaling Trends in IC's
- Yield, Quality and Reliability
- Lifetime, Failure, Degradation and Failure Criterion
- Failure Time Distributions
- Percentiles
- Accelerated Reliability Tests
- Acceleration Factors and Lifetime Models
- Overview of Failure Mechanism

Front-End-Of-Line Failure Mechanisms

- Time Dependent Dielectric Breakdown of Gate Oxide
- Bias Temperature Instability
- Hot Carrier Injection

Day 2 - KRISTOF CROES

Back-End-Of-Line (BEOL), Far-BEOL and Packaging Failure Mechanisms

- Electromigration
- Stress Induced Voiding or Stress Migration
- Time Dependent Dielectric Breakdown of Intermetal Dielectrics
- Chip Package Interaction

- 3D-related failure mechanisms: Reliability related to Through Silicon Via and stacking challenges
- Packaging-Related Failure Mechanisms

Day 3 AM - KRISTOF CROES

Reliability Methodologies

- Reliability Evaluation Strategies
- FMEA: Failure Mode and Effect Analysis
- Statistics: Data Fitting Techniques
- Statistics: Techniques to Reduce Uncertainty in Reliability Predictions

Day 3 PM - DAVID VALLETT

IC Fault Isolation and Failure Analysis

- The role of Failure Analysis in Semiconductor Technology Development and Manufacturing
- Differing Failure Analysis strategies for Technology Development, Yield Analysis, and Reliability Engineering
- Client Support and Failure Analysis of Field Returns
- Analytical approaches for Package, Wafer, and Die Level failures

IC Failure Modes and Defects

- Electrical Failure Modes of Logic, SRAM, DRAM, and Analog/Mixed Signal Devices
- Defect Mechanisms in ICs and IC Packages
- Defects in Design, Processing, and Lithography
- Failures Due to Process/Product Interactions
- Test-induced Defects

Fault Isolation

- Electrical vs. Physical Fault Isolation
- Device Characterization
- Prerequisites for Successful Fault Isolation
- Overview of Methods

Electrical Fault Isolation

- Electrical Fault Isolation Purpose, Fundamentals, and Goals
- Time Domain Reflectometry (TDR)
- Electro-optical TeraHertz Pulse Reflectometry (EOTPR)

- SEM and Atomic Force Nanoprobing
- CV Analysis, Pico-current Imaging, Pulsed IV, and Electron Beam Techniques
- Success Factors - Measurement Resolution, Sensitivity, Accuracy, Reliability

Day 4 - DAVID VALLETT

- Physical Fault Isolation Introduction
- Physical Fault Isolation Purpose, Fundamentals, and Goals
- Overview of Thermal, Photonic, Magnetic, and Scanned Particle Beam Methods
- Sample Preparation for Physical Fault Isolation

Photonic Fault Isolation Techniques

- Photon Emission Microscopy (PEM)
- Optical Beam Induced Resistance Change (OBIRCH/XIVA/TIVA)
- Optical Beam Induced Current (OBIC)
- Laser Voltage Probing/Imaging (LVP/LVI)
- Light Assisted Device Alteration (LADA)
- Picosecond Imaging Circuit Analysis (PICA)

Physical Fault Isolation Continued

- Thermal Fault Isolation - Liquid Crystal Analysis, Lock-In Thermography
- Magnetic Current Imaging by SQUID (Superconducting Quantum Interference Device) and GMR (Giant Magneto Resistive) Sensors
- Electron and Ion-Beam Induced Current (EBIC/IBIC)
- Passive Voltage Contrast by Electron and Ion Beam (PVC)
- Atomic Force Microscope Based Physical Fault Isolation
- Success Factors - Measurement Resolution, Sensitivity, Accuracy, Reliability

Device Deprocessing

- Depackaging Techniques - Laser, Chemical, Mechanical, Plasma
- Wafer and Die Deprocessing - Polishing, Chemical Etching, Plasma Etching
- Focused Ion Beam Principles and Applications

Day 5 - DAVID VALLETT

- Physical Imaging
- Optical Microscopy

- Acoustic and X-ray Microscopy/Tomography
- Scanning and Transmitted Electron Microscopy (SEM/TEM)
- Scanned Probe/Atomic Force Microscopy (SPM/AFM)

Materials Analysis

- Basics Materials Analysis Methods for Chemical Composition and Morphology
- Particle Beam Interactions in Solids
- Bulk Composition Analysis: Energy and Wavelength Dispersive Spectroscopy
- Principles of Electron, Ion, and X-ray Techniques: TEM, AES, SIMS, XPS, and TXRF
- Sensitivity and Resolution Comparisons
- Technique Selection Factors

Practical Applications and Future Challenges

- Case-histories and Examples: Time-resolved Photon Emission Movies of Operating Devices; Nanoscale 3D X-ray Tomography Virtual Sections; Defects; Fault Isolation Results, etc.
- Planning for Analysis to Maximize Effectiveness
- Scaling and Material Challenges in Analytical Science

Instructor Biography

Mr. David Vallett, PeakSource Analytical, LLC, Fairfax, VT, USA; Reliability Failure Analysis Manager (retired) IBM Systems & Technology Group, Essex Junction, VT, USA

Mr. Vallett has over 35 years of engineering and management experience in the characterization and failure analysis of wafer and package level integrated circuits, specializing in fault isolation using optical, thermal, magnetic, and electron/ion beam imaging and stimulation techniques. He shared in IBM's Outstanding Technical Achievement award for development of Picosecond Imaging Circuit Analysis (PICA) using time-resolved photon emission microscopy. Presently he consults in advanced IC imaging and analysis technology, lectures internationally, and provides scanning magnetic microscopy services.

He is widely published with five best-paper awards, holds eighteen US patents, and is a senior member of the IEEE and a member of EDFAS - the Electronic Device Failure Analysis Society. In 2008 he was the General Chair for ISTFA - the International Symposium for Testing and Failure Analysis and is a past chair of the International SEMATECH Product Analysis Forum. Mr. Vallett holds the BS degree in electrical engineering from the University at Buffalo, NY and was named a Fellow of ASM International in 2016.

Mr. Vallett has been a member of the Continuing Education Institute-Europe faculty since 2005.

Dr. Kristof Croes is the group leader of the Reliability, Electrical test and Modeling group at IMEC.

Kristof Croes received his BSc in physics at the Catholic University of Louvain (Belgium) in 1993 and his MSc in biostatistics at the Limburgs Universitair Centrum (LUC) in 1994. In 1999, he obtained his PhD, concerning the development of statistical techniques for planning reliability experiments.

Dr. Croes joined the reliability business unit of XPEQT in 1999, first as the software responsible and then as the manager of the R&D. From 2003 till end 2006, he was product and application manager of the package level reliability products of the Singaporean based company Chiron holdings. In 2007 he went back to research, working as a BEOL reliability engineer in imec in Belgium.

Currently Dr. Croes is group leader of the Reliability, Electrical test and Modeling group at imec, working on test, characterization (electrical, thermal and (thermo)-mechanical) and reliability with main focus on advanced interconnects (2D, 3D, OIO).

Dr. Croes is a new member of the Continuing Education Institute-Europe faculty as of 2016.